NeC4.5: Neural Ensemble Based C4.5
نویسندگان
چکیده
Decision tree is with good comprehensibility while neural network ensemble is with strong generalization ability. In this paper, these merits are integrated into a novel decision tree algorithm NeC4.5. This algorithm trains a neural network ensemble at first. Then, the trained ensemble is employed to generate a new training set through replacing the desired class labels of the original training examples with those output from the trained ensemble. Some extra training examples are also generated from the trained ensemble and added to the new training set. Finally, a C4.5 decision tree is grown from the new training set. Since its learning results are decision trees, the comprehensibility of NeC4.5 is better than that of neural network ensemble. Moreover, experiments show that the generalization ability of NeC4.5 decision trees can be better than that of C4.5 decision trees.
منابع مشابه
Selective Ensemble of Decision Trees
An ensemble is generated by training multiple component learners for a same task and then combining their predictions. In most ensemble algorithms, all the trained component learners are employed in constituting an ensemble. But recently, it has been shown that when the learners are neural networks, it may be better to ensemble some instead of all of the learners. In this paper, this claim is g...
متن کاملSuper Computer Heterogeneous Classifier Meta-Ensembles
AbstrAct This article describes the entry of the Super Computer Data Mining (SCDM) Project to the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2006 Data Mining Competition. The SCDM project is developing data mining tools for parallel execution on Linux clusters. The code is freely available; please contact the first author for a copy. We combine several classifie...
متن کاملA comparative assessment of the performance of ensemble learning in customer churn prediction
Customer churn is a main concern of most firms in all industries. The aim of customer churn prediction is detecting customers with high tendency to leave a company. Although, many modeling techniques have been used in the field of churn prediction, performance of ensemble methods has not been thoroughly investigated yet. Therefore, in this paper, we perform a comparative assessment of the perfo...
متن کاملFast Decision Tree Ensembles for Optical Character Recognition
A new boosting algorithm of Freund and Schapire is used to improve the performance of an ensemble of decision trees which are constructed using the information ratio criterion of Quinlan’s C4.5 algorithm. This boosting algorithm iteratively constructs a series of decision trees, each decision tree being trained and pruned on examples that have been filtered by previously trained trees. Examples...
متن کاملClassification of Ophthalmologic Images Using an Ensemble of Classifiers
The human eye may present refractive errors as myopia, hypermetropia and astigmatism. This article presents the development of an Ensemble of Classifiers as part of a Refractive Errors Measurement System. The system analyses Hartmann-Shack images from human eyes in order to identify refractive errors, wich are associated to myopia, hypermetropia and astigmatism. The ensemble is composed by thre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Knowl. Data Eng.
دوره 16 شماره
صفحات -
تاریخ انتشار 2004